Optimal fusion rule for distributed detection in clustered wireless sensor networks
نویسندگان
چکیده
We consider distributed detection in a clustered wireless sensor network (WSN) deployed randomly in a large field for the purpose of intrusion detection. The WSN is modeled by a homogeneous Poisson point process. The sensor nodes (SNs) compute local decisions about the intruder’s presence and send them to the cluster heads (CHs). A stochastic geometry framework is employed to derive the optimal cluster-based fusion rule (OCR), which is a weighted average of the local decision sum of each cluster. Interestingly, this structure reduces the effect of false alarm on the detection performance. Moreover, a generalized likelihood ratio test (GLRT) for cluster-based fusion (GCR) is developed to handle the case of unknown intruder’s parameters. Simulation results show that the OCR performance is close to the Chair-Varshney rule. In fact, the latter benchmark can be reached by forming more clusters in the network without increasing the SN deployment intensity. Simulation results also show that the GCR performs very closely to the OCR when the number of clusters is large enough. The performance is further improved when the SN deployment intensity is increased.
منابع مشابه
FDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملIntrusion Detection in Wireless Sensor Networks using Genetic Algorithm
Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016